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The Design of a Multiprocessor Operating System

Roy Campbell, Vincent Russo, Gary Johnston

Department of Computer Science

University of illinois at Urbana-Champalgn

1304 W. Springfield Ave., Urbana, ]I, 61801-2987

ABSTRACT

Evolving applications and hardware are creating new requirements for

operating systems. Reai-time systems, parai]el processing, and new programming

paradigms require large adaptive maintenance efforts to modernize existing

operating systems. An alternative to such adaptive maintenance is to seek new

operating system designs that exp]olt modern software en_neering techniques and

methodologies to build appropriately structured modular software. This paper

describes an approach to constructing operating systems based on a class hierar-

chy and object-oriented design, and discusses the bene_ts and difficulties of realiz-

ing this design using C++.

1. Introduction

Choicea is designed as an object-oriented system that supports user applications with an

object-oriented operating system interface. The architecture embodies the notion of a customized

operating system that is tailored to particular hardware configurations and to particular applica-

tions. Within one large computing system containing many processors, many different special-

ized operating systems may be integrated to form a general purpose computing environment.
®

Choices is currently implemented on an Encore Multimax.

Choices, a Class Hierarchical Open Interface for Custom Embedded Systems, provides a

foundation upon which to construct sophisticated scientific and experimental software. Unlike

more conventional operating systems, Choices is intended to exploit very large multiprocessors

interconnected by shared memory and/or high-speed networks. Uses include applications where

high-performance is essential like data reduction or real-time control. It provides a set of

software classes that may be used to build specialized software components for particular appli-

cations. Choices uses a class hierarchy and inheritance to represent the notion of a family of

operating systems and to allow the proper abstraction for deriving and building new instances of

a Choices system. At the basis of the class hierarchy are multiprocessing and communication

objects that unite diverse specialized instances of the operating system in particular computing
environments.

The operating system was developed as a result of studying the problems of building adap-

tive real-time embedded operating systems for the scientific missions of NASA. Major design

objectives are to facilitate the construction of specialized computer systems, to allow the study of

advanced operating system features, and to support parallelism on shared memory and

s This work was supported in part by NASA under grant no. NSG1471 and by AT&T METRONET.

• Multimax is a trademark of Encore Computer Corporation.
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networked multiprocessor machines. Example specialized computer systems include support for

reconfigurahle systems, robotics applications, network controllers, aerospace applications,

high-performance numerical computations, and parallel language processor servers for IFP[14],

Prolog, and Smalltalk. Examples of advanced operating system features include faul_tolerance

in asynchronous systems, real-time fault,-tolerant features, load balancing and coordination of

very large numbers of processes, atomic transactions, and protection. Example hardware archi-

tectures include shared memory multiprocessors like the Encore Multimax and networked com-

puters like the Intel Hypercube.

Choices was designed to address the following specific issues: the software architecture for

parallel operating systems; the achievement of high-performance and real-time operation; the

simplification and improved performance of interprocess communications; the isolation of
mechanisms from one another and the separation of mechanisms from policy decisions.

Of particular concern during the development of the system was whether the class hierarch-

ical approach would support the construction of entire operating systems. C++ was chosen

because it supported classes while imposing negligible performance overhead at run-time. In par-

ticular, we decided to construct all parallel and synchronization features using C++ classes rather

than by introducing new language primitives. Thus Choices is also a study of the adequacy of

class hierarchies to abstract and support parallelism, synchronization, resource allocation, and

other operating system concepts and to allow specializations of classes that facilitate efficient

support for applications.

Fortunately for the designers of Choices, there has been a lot of operating system develop-

ment that is directly applicable to our goals [4]. Abstracting the ideas from many different sys-

tems and reorganizing them into an objects-oriented system has been a major concern of our

design team.

In brief, Choices has been influenced considerably by

• the systems environment provided by UNIX,*

• the problem of allowing multiple processors to execute the kernel of an operating system,

• the reduction of process context switching overheads to better support real-time and

hlgh-performance applications,

• the open architecture of CEDAR [17],

• the use of classes to extend an efficient systems programming language rather than adopt a

more complex programming language that has rich system programming features like Mesa

or Ada,

• the exploitation of virtual memory to support object-oriented paradigms and communica-

tion primitives [1],

• the avoidance of designing another a distributed operating system but instead concentrating

on the design of a parallel operating system, 2

• the avoidance of the undesirable side effects of cacheing and cache flushing overhead in

"UNIX is a Rezistered Trademark of AT&T.

z Many distributed/multiprocessor _ (UNIX United [3[, LOCUS [11], Math [1], l_S I131, RIDE (10 I, NFS [lg], Encore

Multim_ UNIX (UMAX _) [SJ, Sequent Balance ° 8000 UNIX [15]) still impose UNIX limitations on the parallelism and performance of

applications.

2
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cache-orientedmultlprocessors,

• the avoidance of the inclusionof specificcommunication schemes intothe loweststructures

of an operatingsystem kernelthat restrictthe possibilitiesof specializingkernelfeaturesto

take advantage of communication patterns of the applicationor communication mechan-

isms of the hardware,s

• the avoidance of overhead from copying messages into and out of virtualmemory (some

cached systems may pay a double overhead),

• the support of real-timeinterruptsand globalmultiprocessorinterrupts,

• the inclusionof parallelprogramming primitives(forexample, the parallelcreationofparal-

lelprocesses),

• the provision of appropriate error recovery in parallel processing systems,

• the Clouds [2]notionof a userprocessaccessinga userobject,

• the provisionof the smallestoperatingsystem that willsupport a particularapplicationon

a particularhardware 4

• the support for embedded, real-tlme,and server computing servicesthat are provided by

large numbers of fastprocessorsconnected together by shared memory and/or by a fast

network,

• the support fora computational facilitythat ismultltasked (itsupports severalconcurrent

applications),where each task may use multipleprocessors,

• the support forprocessesin an applicationthat may have a high degreeof communication,

In the subsequent sections,we discussthe classhierarchicalorganizationof Cholces, the

various classeswe have builtto implement virtualmemory, the concept of process,the notion of

a persistentobject and exception handling,performance of an object-orientedoperatingsystem,

and the implementation of the system using C++.

2. The Choices Class Hierarchy Model

Several problems emerge when designing an extensible family of operating systems where

each member can be specialized or customized for a particular application or hardware

configuration. Each module within the system may have many different versions tailored for

each different member of the family of operating systems. However, since the different versions

of a module for different machines or applications all perform a similar function, large portions of
different versions of a module will be identical. Customizing an operating system for a new

application requires access to particular aspects of the code that may reside in many different

• UMAX is • trademark of Encore Computer Corporation.

• Balance is n trademark of Sequent Computer Systems.

s Message-oriented kernels like the V System kernel [7J, Accent [IZ[, Amoeba [18], and MICROS [20] build specilc communica-

tion schemes into the lowest kernel structures. For example, some systems implement • few ways of providing "virtual" messages

like "fetch on access." However, these systems are not easy to adapt to support other approaches like "send process on read" or "re-

mote procedure call on execute."

4 General purpose operating systems often employ delayed bindings within their architectures to provide flexibility. Examples

include communication schemes, file systems and additional kernel code to handle different architectures and configurations. Where

several applications need to coexist within the same computing system, Choices allows these applications to each run on their own

custom-built Choices operating system. Any communication required between the applications is supported by common Choices

primitives and shared persistent objects.

3
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A class hierarchy provides a solution to these problems. Particular instances of classes in

the hierarchy are chosen and combined to produce a customized operating system for a specific

architecture and application. Class inheritance provides for code reuse and enforcement of com-

mon interfaces. Customization of the operating system for new applications is guided and a_ded

by the structure induced upon the system by the class hierarchy.

A class hierarchy gives more than ease of customization. It also gives us a conceptual view

of how portions of an operating system interrelate. It k easier to understand and more flexible

than traditional layered approaches to operating system design. A class hierarchy allows concep-

tual "chunking" of knowledge about portions of a system by learning the function of parent

classes and inferring functionality about subclasses. Traditional layered operating system design

approaches group large sections of functlonaHty into a layer, but the interrelations of the layers

are often complex and poorly understood. Also, changing a piece of a layer is in no way facili-

tated by the layering itself. However, in a well-designed Class Hierarchical model only the top

few classes would need to be mastered to achieve a good overall view of the system. Class deriva-

tion gives a method to change specific parts without adversely effecting the whole structure.

Most of the major components of the class hierarchy for Choices are shown in Tables 1

through 4. Table 1 shows the major classes that comprise the first level in the hierarchy. Object

is specialized into seven subclasses including MemoryRange and SpaceList. Each subclass

redefines and adds new methods s to the methods defined for Object.

First Level H|erarehy of Classes

Classes Methods

Object eonstruetor destructor

,LMemoryRanse

Process

ProcessContainer

Exception

F|Her

SpaceList

cof_ructor

con:_ructor

co,tremor

deJ_ruetor

eort_truc_or destructor

constructor demtmtctor

¢onJtruetor demtructor

K_ey to Hierarchy Tables

Symbol Meanin_

Method Definition of Method

Method

Subclass or Inherited Method

Overloadin S of Method

Undefined Method

Table 1: Major _la_,e_ at First Level o/ Hierarch_

s In this psper the terms "member function" and "method" fire used interchangezbly.
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Several guidelines have been used to develop an appropriate class hierarchy for Choices. All

machine dependencies, operating system mechanisms (for example, page table management),

operating system policy decisions (for example, schedulers) and design decisions are encapsulated

within objects. In general, a design decision is often represented as a class with subclasses that

represent the mechanisms that implement the decision. Table 3 shows an example in which the

design separates ProeesaContainers into containers that hold one thread and containers that hold

many. The use of an instance of a subclass of a class as a representative instance of the class is

often used to program specific policy decisions. For example, a FIFO scheduling discipline may

be imposed on processes being added to a ProcessContalner by using an instance of the FTFO$-

cheduler class to represent the ProcessContalner doing scheduling of processes for the system. A

priority scheduled system can be created by replacing this ProcessContalner with an instance of a

subclass that imposes the priority scheduling discipline on the processes it contains. Wherever

possible, the class hierarchy is constructed so that similar saSh-hierarchies can be specialized from

a common ancestor hierarchy. Thus, for example, there is a hierarchy of classes representing

memory management mechanisms shown in Table 2 that is specialized into virtual memory, real

memory, and disk storage, e Overall, design progressed from class hierarchies that had a large fan

out to hierarchies that had a small (2-7) fan out, and greater depth. In the future, multiple inher-

itance may further refine the hierarchy.

C++ was used to program all parts of. the system. The language is efficient and portable. It

implements object oriented programming semantics with minimal runtime overhead and thus is

ideal for operating system programming. It is also easy to interface C++ to assembler in order to

achieve things impossible in the language itself (for example, loading stack pointers and memory

management unit registers.) The operating system design requires operating system mechanisms

to support classes as objects and the dynamic loading and execution of objects. These facilities

are required to build an objec_oriented file system, process mechanism and persistent object

implementation scheme. The support that C++ provides in writing these systems is limited

because dynamic loading is not supported and classes are compiled into C code. However, we do

not consider this restriction in C++ a disadvantage in our implementation because, if. they had

existed, they might have biased our implementation or forced us to modify the semantics ot" the

language.

The Choices cl_es that support operating system construction are divided into two por-

tions. The Serm is a set of classes that encapsulates the major hardware dependencies of Choices

and provides an idea]ize_ hardware architecture to the rest of the classes in the hierarchy. It pro-

vides the mechanism8 for managing and maintaining the physical resources of the computer. A

Kernel is a collection of classes that supports the execution of applications and implements

resource allocation policiea using the Germ mechanisms. Individual customized systems consist

of. instances of. Germ classes defined by Choices appropriate for the particular hardware of the

system, plus the specifically tailored Kernel classes the system builder desires. Once this instance

hierarchy is built, individual applications that run on top of. the new Kernel can further augment

the Choices class hierarchy with their own classes.

In Choices, both the Germ and Kernel class collections are embedded in a class hlerarchy

that has class Object at its root, see Table 1. Class Object provides virtual functions for the con-

struction and destruction of. system instances.

I For simplicity, Table 2 does not show the disk storale claamm.

5
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In the following sections, we will describe some of the classes that constitute Choices.

3. Choices Memory Management

Memory management in Choices is implemented by a class hierarchy derived from the

MemoryRange class shown in Table 2 and supports virtual memory, the sharing of memory, and

memory protection. An instance of a MemoryRange represents a contiguous range of memory

addresses, as the name implies. MemoryRange is subclassed for virtual and real memory. Space

is a subclass of MemoryRange that represents a range of virtual memory that can potentially be

addressed by a processor. A Space is a range of virtual addresses; however, an address in the

range may be unanoeated, reserved and invalid, or reserved and valid (where valid implies that it

is mapped to physical memory). Another subclass, Store, exists to represent physical addresses in

a Choices system. The methods operating on MemoryRanges are specialized for Spaces and

Stores and some of them are also shown in Table 2. Many of the methods defined for Spaces are

inherited by the subclasses of Space. The methods are summarized below.

3.1. MemoryRange Methods

The constructor for a MemoryRange takes, as a minimum, a base address and length for

the range. The parameters of the constructor are augmented in the various subclasses of

MemoryRange in order to implement the various specializations of this class.

The most important methods for MemoryRanges are reserve and release, l_eserve records

that a sub-range of addresses within the MemoryRange are in use or "reserved". The sub-range

to reserve is specified by a starting address and a length argument. Reserve returns an error if

any of the addresses are already reserved (and have not yet been released). A method allocate

(not shown) operates like reserve but takes a single argument, the length to reserve, and reserves

a range of unused addresses starting at an address selected by the method rather than by an

argument. Functions kReserved and _A.vailabie exist to test whether a sub-range is already

_|er_rehy of Memory Classee

Classes Methods

mm

i

E

m
w

i I

MemoryRange teary, release phys.Ad lsResrv, i.Avl, start end sise --

Spaces teary, rele_e phy:.Ad isRemre, iJAvl. *taft end a/:e FLxF'It

JrJtF'ltlnSpace resre, releaJe phya.Ad isResre. _ _ .... _ _

_ Jr FilledF'ltlnSpace reare. _ _ _ _ _ _ _ FizF'lt

* * PrefetchedSpace resre. J, _ _ _ _ J, _ _,

Stores resre, rele_e phys.Ad i_Re_re, i_A_l. _tart end _ize

_lertr_:hy of SpaeeList C_lasses

Classes Methods

SpaceList add remove lsIn spaeeContalner setEqual

._ Domain add remoee J_ Jr

J, Universe add remoee _. _ set_qual

Table _." Memory and $paeeLi_t Cl_e Itierarchie_
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reserved or not.

Other MemoryRange methods include start, end and size that return the base address of,

the last address of, and the total number of addresses in the range. A function kin (not shown)

returns whether an address lles within the MemoryRange.

3.2. Stores

The Store class represents a range of phyaical or real memory. It encapsulates the data

structures used by the reserve, allocate, and release methods of Store to manage the allocation of

real memory to a process. A Choices operating system may include multiple instances of the

Store class; each representing a physical memory with a different property or attribute. For

example, a Store instance may represent the local memory private to a processor, a software

maintained private cache, the physical memory shared within a multiprocessor, or the physical

memory shared between multiprocessor clusters.

3.3. Spaces

The Space class represents a range of virtual memory that may be shared and protected. An

instance of Space is similar to the notion of a segment, it may, for example, represent a stack,
data, or code segment. A Space encapsulates the hardware dependent data structures (for exam-

ple, the page or segment table entries) that implement the mapping of the virtual addresses in

the range to physical memory. The methods reserve, allocate, and release are overloaded to

manage the allocation of virtual memory addresses. For example, a request to extend a rtm-time

stack will result in the reservation of the virtual memory addresses for that extension. Spaces

augment the set of methods inherited or redefined from MemoryRange with fixFault. The

fixFault method is used to implement demand paging, prepaging, or segmentation. For example,

the Encore Multimax version of fixFanlt provides demand paging and is invoked by the exception

handling mechanism of a processor whenever a memory referencing error, including a page fault

or protection violation, is detected by the hardware. The fixFault method validates or maps real

memory into the virtual memory addresses in page-size increments. Should the v_rtual memory

addresses correspond to virtual memory that has been paged-out, the method initiates reading

the pages from disk into the appropriate real memory. A Space also maintains the access per-

missions for its virtual address range. Methods are provided to set these permissions. The permis-

sions on a Space apply to all the addresses represented by that Space.

Every Space maps its virtual addresses by referring to a lower-level MemoryRange that is

its source of real memory. This MemoryRange may be a Store or, recursively, another Space. A

"low-level" Space maps virtual addresses into the real memory of a Store using the methods of

the Store to acquire valid real memory addresses. A "high-level" Space maps virtual addresses

into the real memory of a Store through an intermediary Space. Recursively, it uses the

MemoryRange methods on the Space to acquire valid real memory addresses. The

MemoryRange, Space, and Store method physicalAddress returns a real memory address

corresponding to a virtual address argument. The physicalAddress method for a Space uses the

internal virtual to real memory address mappings of the Space to translate valid virtual

addresses into corresponding physical addresses. If the virtual address is unmapped (invalid), the

Space's method invokes the physicalAddress method of the next lower-level MemoryRange and

returns the result of that method. An invocation of a physicalAddress method on a Space can

result in a chain of such invocations. This chain continues until either a Space is reached for
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which a validmapping for the virtualaddress isdefinedor a Store isreached7. The physic•lAd-

dressmethod for a Store both reservesrealmemory and returnsitsphysicaladdress in a similar

manner to the allocatemethod. Thus, eventually,allphysicalAddressrequestsare satisfied.

Spaces allow several processesto share memory. If required,each process may have a

differentaccesspermission to that memory. The simplestmechanism for sharinga memory isfor

each processto share a common Space. However, using thisapproach each processwillhave the

same accesspermissions to the memory s. To overcome this limitation,processes may share

memory by having multipleSpaces,each of which implements a differentaccesspermission. For

example, two processesmay each have a Space that maps a given virtualaddress range intothe

same realmemory locations.Each Space may setup itsmapping tableswith differentaccessper-

missions. One process may be granted read/write accessto the memory and another may be

granted read only access.Ifa page of memory has to be paged out,both Spaces must invalidate

the corresponding virtualmemory address range. Spaces also allow a real memory to occupy

differentvirtualaddress ranges. For example, a given set of memory locationscan be shared by

mapping itintoboth a virtualaddressrange of 0 - n, and a virtualaddressrange of m - m+n.

3.4. Space Lists,Domains and Universes

A SpaceLiatprovidesmethods for the aggregationof Spaces and isshown in Table 2. Itis

specializedintoa Domain that representsthe virtualmemory that can be accessedby a user pro-

cessas itexecutesan applicationor a persistentobjectmethod. Domains have methods add and

remove that grant or revoke a process'accessto particulardata and code. In addition,methods

are provided to check ifa Space is contained within a Domain (kin), and to return the Space

within a Domain containing a given address (spaeeContainlng). Another specializationof a

SpaceList is the Universe that representsthe virtual memory and, in particular,the actual

hardware translationmechanism of a processor. A Universe is a listof the non-overlapping

Spaces that form the virtual memory that is addressable by a processor at any one time.

Domains as well as individualSpaces may be added or removed from a Universe. In the Mul-

timax implementation, the Universe maintains the firstlevelpage tablesand isresponsiblefor

keeping the actualmemory mapping ofthe processorconsistentwith itslistof Spaces.

3.4.1. Primitive and Derived Spaces

A processmay have rightsto accessa Space as a PrimitiveSpace that containsmemory (for

example, a processstack,code, or localdata),or as a Derived Space that contains persistent

objects.° PrimitiveSpaces are protectedfrom invalidread,write,or executeaccess. The contents

of a Derived Space cannot be accessedby a processunlessitchanges itsdomain of executionto a

persistentobjectthatisencapsulatedwithinthe Space. This change of domain can only occur by

the invocationof a persistentobjectmethod. Such an invocationcreatesa page fault.The Germ
then checks that the method invoked isa validmethod and that accessto that method has been

granted to the process.A Domain containing the Primitive Spaces that permit accessto the

7Usuxily, there is one Space thzt is at the lowest-level and this coordinates the reservztion and vzlidation of the shzred memory.

sit is possible to overcome this problem by runnimt some processes in supervisor state and others in user stste. This solution is

used for certain system functions, but is not • zenersl mechznism.

s A Derived Spzce is ere•ted from • Primitive Specs by frantinz processes zccess rif_hts to the methods of the object_ within the

Spsce. In Choices, such objects •re called "persistent" becznse their existence becomes independent of the lifetime of shy oue process

(in particular the one thzt created it). We emphssise the distinction between • Derived Space and • persistent object. Althouzh z

Derived Space czn contain persistent objects, the Space itself is • (germ object.

8
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contents of the persistent object is then added to the Universe and the method is executed. The

change in Domain may also remove other Domains from the Universe according to protection

policies. (However, a discussion of the implementation of protection policies and the naming

schemes for persistent objects and their methods is beyond the scope of this paper.)

The next section discusses the Choices concept of a process.

4. The Choices Process Model

Choices was designed to support real-time multiprocessing and parallel computing on large

numbers of processors. To facilitate this, Choices supports the concept of a computation that is

composed of a potentially large number of lightweight, independent parallel processes. A single

one of these processes is represented by an instance of the Choices Process class shown in Table

3. An application may use multiple communicating processes to achieve concurrency and paral-

lelism. Each Process represents a small independent sequential computation that can share

memory through the memory management mechanisms previously described. Processes exist

orthogonally to memory and address management issues. Each Choices Process has a Domain

that specifies its associated virtual memory. Usually, the executable code, initialized data, unini-

tialized data, and stack are represented as separate Spaces within this Domain. The constructor

for a process is parameterized by an initial Domain, an initial program counter and stack

pointer, and arguments to the process. Methods for Processes alter their Domains, manipulate

scheduling parameters, and handle preemption and dispatching.

4.1. Process Context Switching

The state of a process is recorded by storing a stack pointer, a program counter, and a set

of register contents within an Process object. A small system stack is maintained by a Process in

order to handle hardware preemption. The dkpatch method reloads a CPU's registers with

copies that are stored within the Process. In the Multimax implementation, if the Domain of the

Process being dispatched matches the Universe of the processor (the processor may have been

executing a process that has a similar domain), no memory context switching is necessary. That

is, the Multimax page table entries do not need to be modified and the memory management unit

(lV[M_) does not need to be flushed.

Interrupt and reai-time processing require the ability to switch between processes with

minimum context switching overhead. Unfortunately an executing process accesses a stack, code,

and data represented by the various Spaces contained within its Domain. To accommodate

high-performance context switching, processes may lock the memory of a MemoryRange as

resident (the locking methods are not discussed in this paper.) Locking memory to be resident
within a Space causes the corresponding virtual addresses to be validated and the associated real

memory to be locked as resident in physical memory by the corresponding Store. In addition, a

process may lock a Space within the CPU's Universe, making the Space and its tables resident

and ensuring that the Space's virtual memory mapping is available. A context switch to a pro-

cees that addresses only resident pages in resident virtual memory creates only the register load-

ing overhead.

Interrupt handlers and real-time processes can be implemented using this high-performance

optimization, if desired. Such processes may still be protected from other applications by run-

ning the processes in the privileged state of the processor and setting the memory protection of

the Spaces in their Domain to exclude access in non-privileged mode. Thus, even though a Space

may be locked in the virtual memory of the processor, it can remain protected from unprivileged

processes. The Kernel memory of a Choices system is implemented as one such Space.
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4.2. Interprocess Conununication

Communication between processes can be achieved by means of shared Spaces or by invok-

ing methods 1° on another process's Process. Popular shared memory and message passing com-
munication schemes exist in the system as part of the operating system and are defined within

the class hierarchy (not shown in this paper.) Other user defined communication schemes can be

built by extending the class hierarchy. An interface compiler for C++ enriches the possible com-

munication schemes. Currently defined are a Path C++ class (named after Path Pascal [5]), and

semaphores. Monitors, messages, and simple varieties of guarded commands are currently being

designed and implemented.

Protected communication can be achieved by means of shared Spaces containing persistent

objects (defined later). The methods of such objects may enforce particular communication proto-
cols upon the processes that use them and the protection provided by the objects methods

prevents misuse.

Persistent objects may be aetbJe, that is, they may have constructors or methods that

create "encapsulated" Processes. Such a Process is initialised with a Domain that includes the

primitive Spaces of the persistent object. Thus, a process can be directly associated with a per-

sistent object. Active objects can be used to implement name servers and to send asynchronous

messages. Several persistent sltstem objects augment the shared persistent objects and provide

high-performance communication channels between processes and between processes and devices.

System objects can support stream-based communications, broadcasts, multicasts, and block

i/o.

4.3. ProceseContainers and Scheduling

Scheduling and dispatching issues in Choices are handled by instances of the ProcessCon-

Seine," class shown in Table 3. A ProcessContainer, as the name implies, is a container of

Hierarehy.gf Proeeu(_onta|ner Classes

Classes Methods

ProcessContainer add remove

SinsleProcessHolder add remoee

_ LockedSn'$1Prc'sHl'dr add remoce

_tJ,CPU add remoee

FIFOScheduler add remoee

I I P_Scheduler _ remoee

t, emp 
_Empt¥

imEmpt¥

t

u E

m m

u

dlsableIntrpt. enablelntrpt.

a

m n

Hierarchy of Process Class

I MethodsClasses d|spateh [ domain I eh'gDomaln I seh'Info I setSeh'InfoProct_s

Table 8:ProceJm and ProeeJmCon_ainer Clara Hierarchy

,s Such a method is similar in intent to the UNIX signal.
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Processes. It is the basic entity of scheduling and dispatching in any Choices system. All

scheduling issues involve moving Processes between ProeessContainers.

The queueing discipUne that a ProcessContainer uses depends entirely on the subclass of the

ProeessGontainer hierarchy being used. The top level ProcessContainer class itself is abstract and

only defines the operations add (for inserting Processes into the container), remove (for remov-
ing the next available Process from the container), and _Empty (for testing whether the con-

tainer is empty or not.) Subclasses redefine these methods, for example, to add and remove

Processes in FIFO, LIFO, or priority order (not shown.)

ProcessContainers implement the "traditional" run/ready/blocked queue models of operat-

ing systems. ProcessCont,'Liners are also used to store Processes that await an event or are

blocked on a semaphore operation. A special subclass of ProcessContainer, CPU, has an add

method that "stores" and executes a Process on a processor. The CPU remove method is used to

model preemption. The CPU is conceptually a special type of ProeessContainer that invokes the

dispatch method on a Process that is placed into it. Multiproeessing fits naturally into the

Choices model of scheduling since a Choices system can consist of more than one CPU object.

Persistent objects are discussed further in the next section:

5. Persistent Objects

Choices is designed with the objective of placing many operating system and subsystem

components in a protected Space rather than in a kernel as is done in traditional systems. This is

done to reduce the interdependences among operating system components and to increase the

coherence of the components themselves. Such components are implemented as Choices per-

sigtent objects. That is, instances of classes that reside in memory for periods that exceed the

execution of a particular process and that may be shared between multiple processes. Persistent

objects may be mapped into the virtual memory of several processors at the same time using the

Space shared memory implementation. In a sense, the Germ and Kernel of a Choices system are

collections of persistent objects that are always resident and accessible (in a controlled manner)

in the address space of every processor.

A full description of the protection scheme used in Choices is beyond the scope of this

paper. However, we must introduce enough of the scheme here in order to describe access to (and

the invocation of methods on) a persistent object. Each process executes within a protection

domain that dictates what the process may access. The protection domain of a process is

dynamic and may change by adding or removing Spaces. Initially, the protection domain

depends upon the protection of the executable file that the process is created from and the pro-

tection domain of the parent process. A process that executes a method of a persistent object

enters a new protection domain that depends upon the protection of the Derived Spaces contain-

ing the object and the protection domain of the process. When the process returns from the

method invocation, its previous protection domain is restored. The scheme is implemented using

the memory management classes introduced in §3.

For example, policy modules of the operating system that traditionally are part of the ker-

nel, may be implemented as persistent objects. A process executing one of the methods within

these persistent objects may require access to Germ data structures (typically also requiring some

sort of "supervisor" execution privileges). This is possible by having the process enter the protec-

tion domain of the persistent object (which would include the change to the supervisor execution

level) via the gate mechanism. The gate mechanism implements the controlled entry of the pro-

cess into the new protection domain. When the invoked persistent object method returns, the

process' protection domain is restored to what it was before the method call.

11
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Processes access persistent objects using an object descriptor and a method. A process must

obtain the object descriptor before use. Object descriptors are provided from user or system

name servers.

Name servers are themselves persistent objects. Choices includes "standard name servers"

that are in the Kernel and may be accessed by every process. These name servers provide basic

facilities llke the standard file system and |ntertask communication. Other user defined name

servers must be accessed through the standard name server utUities.

On request, the name server grants the process access to the object and returns an object

descriptor for the requested object. The grant operation is implemented in the Germ and checks

Kernel protection policy to determine if the name server/process grant operation is valid. The

name server must have appropriate access rights to the persistent object. If the operation is

valid, the Germ adds the Space of the persistent object to the Domain of the Process, and returns

the Space address and gate information to the name server. The name server packages an object

descriptor which includes the persistent object, Space and gate information and returns.

An operation on a persistent object is invoked through a gated request. The Germ ensures

that the object descriptor and method used by the process' gated request correspond to the valid

persistent object address and method entry point within the Space. The Domain of the Process

is changed to reflect the protection domain requirements of the Space.

In hardware architectures with limited virtual memory, the gated method of invoking a per-

sistent object allows many different Spaces to share the same virtual memory address range. The

Space and the persistent objects it contains can be mapped into and out of the same address

range on demand 11. In such implementations, the Domain will contain each Space, but only one

of the Spaces will be present in the Universe at any one time.

6. Exception Handling in Choices

Exceptions in Choices are managed by the Ezception class _nd its various subclasses shown

in Table 4. The parent class of Exception defines the method, raise, to manage or correct the

exception condition. Upon an exception condition, the Choices Germ manages the task of con-

verting the machine dependent details of exception processing into an invocation of the raise

method for the Exception object managing the exception.

Two subclasses of Exception of interest are Trap and Inte,'r_,pt. The Trap class provides

Choices with a mechanism for handling traps that a process may generate as a direct result of its

execution. This includes machine traps (for example, divide-by-zero and illegal instruction), vir-

tual memory access and protection errors (for example, page faults of various types), and explicit

program traps (for example, a "system call".)

The basic function of a Trap handler is, if possible, to service the exception condition within

the context of the faulting Process, or otherwise to terminate the execution of the faulting Pro-

tesS.

Interrupts occur asynchronously and, in general, have nothing to do with the currently exe-

cuting process. In Choices, the await method of an Interrupt can be used to specify a Process that

must be executed when the Interrupt is raised. (Interrupts must be awaited if they are not to be

missed). The raise method of the Interrupt class saves the context of the interrupted process and

n In many hardware architectures, a persistent object must be relocated by a link editor to allow it to execute within a specific

address range. This implies that once it is activated, it cannot be moved to a new address range.

12
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Hierarchy of Exception
Classes

Exception raise

HardwaxeException

_ AbortTrap re/me

_ SVCTrap ra/Je

_ KlesallnstructionTrap, _ raiJe

_ UndefinedInstructionTr ap raise

_ DivideByZeroTrap raile

_ InterruptException ra/_e

_ T]meSliceLuterrupt ,..r4_e

SoftwareException raile

_ TwoProceuContainerException

_ OneProceuContainerExceptlon

_ GarbageException

_|&BaeS

Methods

flxdPgFIt.

await

eloekT|ek

handler

handler

handler

Table _: Ezception Clale Hierarchy

resumes the Process awaiting the occurrence of the interrupt. The Choices Germ has no require-
ment that all interrupts be handled by the class Interrupt. A Choices kernel implementer can

choose to have any type of Exception object handle an interrupt. In future work, various

user-oriented exception schemes will be implemented as classes and by the interface compiler.

Examples of such schemes can be found in [6].

7. Experiences Using C++ as a Systems Programming Language

It is not often that it is possible to conduct operating systems research using a new

language. Since the C+÷ compiler 12 generates C and we were consequently able to port it to the

Encore Multimax irf just a few hours, we were able to do all our development in C+÷. No addi-

tional vendor support for C++ was required. In addition, we were able to exploit the Encore C

compiler for the Multimax which produces highly optimized code. Because we are using the same

C compiler for measuring performance of algorithms on the Multimax under UNIX and under

Choices, our measurements more accurately reflect the differences in the operating systems rather

than in their compilers.

Overall, the implementation of Choices has benefited greatly from the availability of C÷+,

its performance, and its compiler. Run-time overhead is negligible, even in the case of virtual

member functions (class methods). Because of the small overhead, the authors feel that virtual
member functions could have been defined as the default in the language since their semantics

more closely model the desired behavior of method (member function) redefinition in class hierar-
chies.

We have encountered some minor problems and issues that have not been a major cause for

concern but, from our (perhaps naive) perspective, could be addressed and improved in future

The AT&T.C*'* Translator.

la



Z
!

= =f

L

U

l

I

m

m

B

|

releases of C++.

The order in which the constructors for statically allocated objects are invoked should be

under the control of the programmer (or at least defined). For example, during the boot of

Choices we have preferred to initialize the Console object before other objects in order to permit

the constructors of other system objectsto print diagnostic messages.

We believe that classes should be "first-class" objects. That is, a class should be an entity

on which a method can be invoked. This would provide a number of advantages. The existence

of class data and methods would be more consistent with the way in which i,._tance data and

methods are niodeled. 13 For example, new and delete could be class methods. This would allow

easier (and cleaner) customized memory allocation strategies to be implemented on a per-class
basis.

Next, class objects would simplify the implementation of dynamic method binding. For

example, virtual function tables (which currently do not have unique instances) could be stored as
class data. Each instance of a class could include a reference to its class object, so that a change

to the class object's virtual function table could be used to change the binding of a method of

every instance of the class.

Last, class objects would allow a solution to the static constructor ordering problem. Con-

structor dependency information could be included in the class data, and could then be topologi-

cally sorted at link-time to determine a correct calling order.

8. Summary

A Choices Kernel currently runs on a 10 processor Encore Multimax that supports the

MemoryRange model of memory management as well as the Process and Exception concepts.

Of particular concern during the development of the system is whether or not the class

hierarchical approach can support the construction of entire operating systems. C++ was chosen

as an implementation language because it supports class hierarchies and inheritance while

Preliminary Choices Performance Data

Encore Multimax 32032 (0.75 MIP)

Encore 4.2 BSD Unix ChoicesOperation ..........

System CallOverhead 173psec

Process Creation 26.3msecs

Context Switch

Shared Memory Example 1' O.032secs

39psec

3.Smsecs

536psecs

O.022secs

Table 5: Performance Data

Is Currently, class dat6 are obtained using the keyword "static" in the class definition (there are no clus met/sods.}

t4 The example creates four processes on independent processors, three sum a ten column array and the fourth sums the three

resulting sums. The Multimax multitasking library package was used under UMAX.
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imposing negligible performance overhead at run-time. A software monitor is being used to

evaluate the performance of Choices on an Encore Multimax with DPC processors. Although it

is di_cult to provide a meaningful performance measurement of an operating system, we have
obtained results that are encouraging and these are shown in Table 5. System call overhead

(including a trap and change to supervisor state) compares favorably with UNE( and is only
about four times the overhead of a normal procedure call. The process creation time includes

creation of new virtual memory "spaces" for the process. Further tuning will improve these

figures.

Current effort is devoted towards improvement and further implementation of communica-

tion and persistent object support. Future plans include an object-oriented file system, an

advanced interface compiler, and tools for configurin s Choices systems. Once Choices is stable,

the code will be placed in the public domain to promote research into customized operating sys-

tems.
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